The Presstip: A Hybrid Soft Tactile Sensor for Robot Pose Estimation
and Texture Classification
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I. INTRODUCTION

Robust tactile sensing is vital for enhancing robotic in-
teraction with the physical world [1], [2], [3], [4]. While
high-resolution optical tactile sensors [5], such as the TacTip,
deliver exceptional accuracy, their complexity and cost could
limit their practicality in resource-constrained scenarios. To
address this, we developed the Presstip, a low-cost, soft-
bodied sensor that combines piezoelectric sensing, an ac-
celerometer, and an array of pressure sensors [6]. This hybrid
design enables the Presstip to capture a broad range of tactile
data, from detecting surface textures to measuring forces and
pressures.

The Presstip (figure 1c) offers versatility through its multi-
sensor integration. The piezoelectric sensor and accelerome-
ter collaboratively detect textural features, while the pressure
sensor array, located on the underside of the device, pro-
vides detailed spatial information, such as edge and shape
detection. These combined capabilities allow the Presstip
to support tasks like robot pose estimation and texture
classification in an affordable and accessible manner [6].
This extended abstract highlights two distinct experiments
demonstrating the Presstip’s capabilities.

II. RESULTS
A. Pose Estimation

In the first example, the Presstip serves as a foot sensor for
a robot from figure le. Using the pressure array, we trained
a Random Forest regression model to estimate the robot’s
pose based solely on foot pressures (input) and ground truth
labels derived from an accelerometer placed on the robot’s
head (output). Figure 1b shows an example of the inputs.

The Presstip demonstrated robust performance as a foot
sensor for robotic pose estimation. The regression model
trained on pressure data (input) and accelerometer-derived
ground truth labels (output) achieved a high level of accuracy
in predicting the robot’s pose during transitions from two-
leg to one-leg stances (chassis seen in figure le). This indi-
cates that the pressure sensor array is capable of capturing
nuanced changes in contact forces that correlate with the
robot’s overall body orientation. The regression model mean
squared error averaged at 0.06 (results seen in la). The
robot could additionally predict the direction of an edge
with 91.8% (visualisation seen in figure 1b). The experiment
highlights the versatility of these sensors, predicting complex
3D orientation using force detection.
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B. Texture Detection

The second experiment focused on texture classification.
By moving the Presstip over 15 distinct textures [7], [8],
we collected temporal sensor data from the piezoelectric
sensor and accelerometer. These textures consisted of Carpet,
a laced mat, wool, cork, felt, a long carpet, cotton, flat
plastic, flat rubbery tape, foam with large groves, foam with
small groves, bubble wrap, flat foam, jeans, and leather. Most
tactile datasets consist of similar textures, or at least a range
of household items. The textures were gathered using the rig
seen in figure 1d. We then trained a variety of classifiers
on the input data from both sensors (accelerometer and
piezoelectric) to predict the texture class. We compared these
results to a high resolution tactile sensor (TacTip) on the
same dataset

In texture classification, the Presstip’s hybrid sensing ap-
proach significantly outperformed individual sensing modal-
ities. The combination of piezoelectric and accelerometer
data yielded higher classification accuracy compared to using
either sensor alone. Averaging 87.5% on a random forest
classifier with both sensors, and only 62.31% with the
accelerometer and 74.56% with the piezoelectric sensor.
Notably, the hybrid system successfully identified 15 distinct
textures with an accuracy on average 10-12% less than the
TacTip. These results emphasise the strength of sensor fusion
in compensating for the limitations of low-cost tactile sen-
sors. Furthermore, the Presstip’s cost-effective design makes
it an attractive alternative for applications where budget
constraints or simpler designs are prioritised over the ultra-
high accuracy offered by optical sensors.

ITII. CONCLUSIONS

Our findings demonstrate the Presstip’s potential as a
versatile and economical tactile sensor for robotics, capable
of performing complex tasks such as robot pose estimation
and texture classification with respectable accuracy.

While high-resolution optical sensors like the TacTip
outperform the Presstip in terms of precision, the Presstip’s
hybrid sensing approach - combining piezoelectric and ac-
celerometer data - narrows this gap considerably. This un-
derscores the potential of combining complementary sensing
modalities to maximise performance in low-cost systems.
Future work will explore expanding the dataset and further
optimising the hybrid sensing strategy to improve perfor-
mance across additional applications.

These results highlight the potential of integrating multiple
sensing modalities to enhance performance while maintain-
ing affordability.
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a: Results of the regression model showing actual and predicted value from the robot tilt experiments. b: Shows the averaged sensor values from

the foot sensor shown in ewhen dragged in different directions. Black is no pressure, yellow is higher pressure. ¢: shows the PressTip final version PCB
and velostat pads placed on the tactile pads underneath the silicone body. d: The Optical tactile sensor (TacTip) and the rig used to collect the datasets. e:
shows the chassis and foot PCB design.
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